conditional variance - significado y definición. Qué es conditional variance
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es conditional variance - definición


Conditional variance         
VARIANCE OF A RANDOM VARIABLE GIVEN THE VALUE OF OTHER VARIABLES
Scedastic function; Skedastic function
In probability theory and statistics, a conditional variance is the variance of a random variable given the value(s) of one or more other variables.
Conditional variance swap         
A conditional variance swap is a type of swap derivative product that allows investors to take exposure to volatility in the price of an underlying security only while the underlying security is within a pre-specified price range. This ability could be useful for hedging complex volatility exposures, making a bet on the volatility levels contained in the skew of the underlying security's price, or buying/selling variance at more attractive levels given a view on the underlying security.
Bias–variance tradeoff         
  • Bias and variance as function of model complexity
PROPERTY OF A SET OF PREDICTIVE MODELS WHEREBY MODELS WITH A LOWER BIAS IN PARAMETER ESTIMATION HAVE A HIGHER VARIANCE OF THE PARAMETER ESTIMATES ACROSS SAMPLES, AND VICE VERSA
Bias variance; Bias-variance tradeoff; Bias-variance dilemma; Bias–variance dilemma; Bias-variance decomposition; Bias–variance decomposition; Bias and variance tradeoff; Bias--variance tradeoff
In statistics and machine learning, the bias–variance tradeoff is the property of a model that the variance of the parameter estimated across samples can be reduced by increasing the bias in the estimated parameters.